SEGMENTATION OF CARDIAC MRI IMAGES USING FULLY CONVOLUTIONAL DENSE NETWORKS (FC-DENSENET): AN ISLAMIC PERSPECTIVE ON MULTI- CLASS SEGMENTATION OF RIGHT VENTRICLE (RV), MYOCARDIUM (MYO), AND LEFT VENTRICLE (LV)
DOI:
https://doi.org/10.22373/jintech.v5i2.6053Keywords:
Cardiac MRI Segmentation, FC-DenseNet Architecture, Heart disease diagnosisAbstract
This study developed an automatic multi-class segmentation model for cardiac MRI images using the FC-DenseNet architecture. The model was trained on a dataset of 1,322 images from patients with various cardiovascular conditions and healthy subjects. Data augmentation techniques, including rotation, shifting, zooming, and flipping, were employed to enhance generalization. The model achieved Dice Coefficient scores of 0.83 for the right ventricle (RV),
0.78 for the myocardium (Myo), and 0.71 for the left ventricle (LV), demonstrating satisfactory segmentation performance. High training accuracy and decreasing loss over 30 epochs indicate effective learning, highlighting the model's promise for clinical application in cardiac MRI analysis. This research resonates with the teachings of Surah Al-Maidah, verse 32, which emphasizes the significance of saving and protecting life. By improving diagnostic capabilities in cardiology, this model not only contributes to better treatment planning for heart diseases but also embodies the moral responsibility to use technology for the benefit of humanity. To further enhance the model’s accuracy and reliability, strategies such as advanced data augmentation, ensemble modeling, hyperparameter optimization, and attention mechanisms could be explored, ultimately supporting improved diagnosis and treatment planning in cardiology.
References
REFRENCES
E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das, R. Deo, S. D. de Ferranti, J. Floyd, M. Fornage, and C. Gillespie, ―Heart Disease and Stroke Statistics-2017 Update: A Report from the American Heart Association,‖ Circulation, vol. 131, no. 4, pp. e29, 2017.
World Health Organization. (2023). Global status report on noncommunicable diseases 2023. World Health Organization. https://www.who.int/publications/i/item/9789240064102
J. Caudron, J. Fares, V. Lefebvre, P.-H. Vivier, C. Petitjean, and J.-N. Dacher, ―Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability,‖ Acad Radiol, vol. 19, pp. 991–1002, 2012.
S. E. Luijnenburg, D. Robbers-Visser, A. Moelker, H. W. Vliegen, B. J. M. Mulder, and W. A. Helbing, ―Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging,‖ Int J Cardiovasc Imaging, vol. 26, pp. 57–64, 2010.
C. F. Mooij, C. J. de Wit, D. A. Graham, A. J. Powell, and T. Geva, ―Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles,‖ J Magn Reson Imaging, vol. 28, pp. 67–73, 2008.
F. Haddad, S. A. Hunt, D. N. Rosenthal, and D. J. Murphy, ―Right ventricular function in cardiovascular disease Part I: Anatomy physiology aging and functional assessment of the right ventricle,‖ Circulation, vol. 117, no. 11, pp. 1436–1448, 2008.
M. R. Bristow et al., ―The pressure-overloaded right ventricle in pulmonary hypertension,‖
Chest, vol. 114, no. 1, pp. 101S–106S, 1998.
J. Ringenberg, M. Deo, V. Devabhaktuni, et al., ―Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI,‖ Computerized Medical Imaging and Graphics, vol. 38, no. 3, pp. 190-201, 2014.
Z. Guo, W. Tan, L. Wang, et al., ―Local Motion Intensity Clustering (LMIC) Model for Segmentation of Right Ventricle in Cardiac MRI Images,‖ IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 2, pp. 723-730, 2018.
M. Ghelich Oghli, A. Mohammadzadeh, R. Kafieh, et al., ―A hybrid graph-based approach for right ventricle segmentation in cardiac MRI by long axis information transition,‖ Physica Medica, vol. 54, pp. 103-116, 2018.
A. Goshtasby and D. A. Turner, ―Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers,‖ IEEE Trans Med Imaging, vol. 14, pp. 56–64, 1995. [Online]. Available: https://doi.org/10.1109/42.370402.
N. Liu, W. Strugnell, R. Slaughter, R. Riley, S. Crozier, S. Wilson, et al., ―Right ventricle extraction by low level and model-based algorithm,‖ in Proc. IEEE Eng. Med. Biol. 27th Annu. Conf., 2005, pp. 1607–1610. [Online]. Available: doi:10.1109/IEMBS.2005.1616745.
J. A. Rosado-Toro, A. Abidov, M. I. Altbach, et al., ―Segmentation of the Right Ventricle in Four Chamber Cine Cardiac MR Images using Polar Dynamic Programming,‖ Computerized Medical Imaging and Graphics, vol. 62, 2017.
J. Lötjönen, S. Kivistö, J. Koikkalainen, D. Smutek, and K. Lauerma, ―Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images,‖ Med Image Anal, vol. 8, pp. 371–386, 2004. [Online]. Available: https://doi.org/10.1016/J.MEDIA.2004.06.013.
M. S. ElBaz and A. S. Fahmy, ―Active shape model with inter-profile modelling paradigm for cardiac right ventricle segmentation,‖ in Proc. Medical Image Computing and Computer Assisted Interventions (MICCAI), Nice, France, October 2012, pp. 691–698.
D. Grosgeorge, C. Petitjean, J. Caudron, J. Fares, and J.-N. Dacher, ―Automatic cardiac ventricle segmentation in MR images: a validation study,‖ Int J Comput Assist Radiol Surg, vol.
, pp. 573–581, 2011. [Online]. Available: https://doi.org/10.1007/s11548-010-0532-6.
G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, ―Densely connected convolutional networks,‖ CoRR, vol. abs/1608.06993, 2016.
C. Petitjean, M. A. Zuluaga, W. Bai, J.-N. Dacher, D. Grosgeorge, J. Caudron, et al., ―Right ventricle segmentation from cardiac MRI: a collation study,‖ Med Image Anal, vol. 19, pp. 187–
, 2015. [Online]. Available: https://doi.org/10.1016/J.MEDIA.2014.10.004.
O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, et al. "Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved ?" in IEEE Transactions on Medical Imaging, vol. 37, no. 11, pp. 2514-2525, Nov. 2018 doi: 10.1109/TMI.2018.2837502
Chalapathy, R., & Kegelmeyer, P. (2019). Neural Network-Based Data Augmentation for
Image Classification. Journal of Machine Learning Research, 20(1), 1-15.
Zhou, S. K., & Greenspan, H. (2017). Medical Image Analysis: A Review. Computerized
Medical Imaging and Graphics, 53, 1-16.
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with Conditional Adversarial Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1125-1134.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rana Sulthanah Ridhwan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


