Principle and Performance of Portable X-Ray Fluorescence (XRF) Analysis for Rock Geochemical Characterization Using Bruker S1 Titan 600
DOI:
https://doi.org/10.22373/juritika.v1i2.9324Keywords:
Budidaya Cacing Tanah, Bruker S1 Titan 600, mineral characterization, sample preparation effects, gold analysisAbstract
Portable X-Ray Fluorescence (pXRF) is widely used for rapid, non-destructive geochemical characterization of rocks and soils in laboratory and field applications. This study evaluates the working principles and analytical performance of the Bruker S1 Titan 600 portable XRF analyzer for rock-derived materials. Construction fill soil and iron sand samples collected from Aceh Province, Indonesia, were analyzed using the geomining calibration mode under controlled laboratory conditions with repeated measurements. The results show that silicon (Si) is the dominant element in construction fill soil, with concentrations consistently exceeding 60 wt%, while iron (Fe) is dominant in iron sand samples with concentrations above 70 wt%. The repeated measurements demonstrate good analytical repeatability for major elements, indicating that the instrument is suitable for preliminary geochemical classification and screening of geological materials.
References
Anif. (2007). Penggunaan sinar-X untuk analisa sampel. Blogspot.
Astuti, S. D., Widiyanti, P., Wibowo, H., Arifianto, D., & Istiqomah Nurdin, D. Z. (2024). SKINOLASER: Inovasi terapi noninvasif pada luka. Airlangga University Press.
Atmodjo, D. P. D., Suryana, D., & Wibowo, H. (2013). Pengujian unjuk kerja sample holder XRF Epsilon 5. Dalam Prosiding Seminar Nasional Sains dan Teknologi Nuklir. Pusat Teknologi Nuklir Bahan dan Radiometri (BATAN).
Azizah, N. (2023). Jenis bahan tambang golongan A, B, dan C serta contohnya. Tirto.id.
Bruker Corporation. (n.d.). Bruker enables. Bruker Corporation.
Hamzah, M. (2004). The use of X-ray fluorescence technique (XRF) in the determination of trace elements in environmental study: A case study for sediments and soils. Dalam Radiation processing technology in the 21st century (hlm. 449).
Hendrian, Y. (2021). Perancangan alat ukur suhu tubuh dan hand sanitizer otomatis berbasis IoT. Jurnal Infortech, 3(1), 33–39.
Jamaluddin, K. (2010). XRD (X-ray diffraction). Makalah Fisika Mineral, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Halu Oleo, Kendari.
Putra, K. P. (2012). Pengaruh perbedaan tegangan alat radiografi gigi terhadap kualitas densitas gambar radiografi periapikal (Skripsi). Universitas Jember.
Quimby, R. S. (2006). Photonics and lasers: An introduction. John Wiley & Sons.
Radiology Key. (n.d.). X-ray production, tubes, and generators. Radiology Key.
Rianti, E. D. D. (2013). Pemanfaatan sinar inframerah terhadap kesehatan manusia. Jurnal Ilmiah Kedokteran Wijaya Kusuma, 2013(2).
Rianti, E. D. D., Tania, P. O. A., & Listyawati, A. F. (2021). Pengaruh paparan sinar inframerah terhadap pertumbuhan koloni Staphylococcus aureus dan Escherichia coli dengan indikator jumlah koloni. Dalam Prosiding Seminar Nasional Biologi (Vol. 9).
Sari, R. K. (2017). Potensi mineral batuan tambang Bukit 12 dengan metode XRD, XRF, dan AAS. Eksakta, 17(2).
Thermo Fisher Scientific. (n.d.). XRF basics: X-ray fluorescence (XRF) academy. Thermo Fisher Scientific.
Viklund, A. (2017). Teknik pemeriksaan material menggunakan XRF, XRD, dan SEM-EDS.
Widyatmoko, H. (2010). Akurasi wavelength-dispersive X-ray fluorescence. Makara Journal of Technology, 8(2), 147–709.
Yumiarti, Yusuf, M., Mellawati, J., Yulizon, M., & Surtipanti, S. (2005). Elemental analysis of air particulate samples in Jakarta area by X-ray fluorescence spectrometry. Dalam Proceedings of the Scientific Meeting on Application of Isotopes and Radiation: Chemistry, Environment, Radiation Process, and Industry (hlm. 244).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alif Furqan, Muhammad Revyyansyah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
