BIOREMEDIASI LOGAM BERAT OLEH FUNGI LAUT

Main Article Content

Syafrina Sari Lubis

Abstract

Heavy metals are compounds that have high toxicity and can cause serious health problems for humans and pose a serious threat to the sustainability of the ecosystem. Prokaryota microorganisms and eukaryotes have the ability to process bioremediation of heavy metals in the environment. Marine fungi as eukaryotic microbes that have high species diversity. The ability to live in marine fungi is influenced by environmental factors that differ from the terrestrial environment such as temperature, pressure, and salinity. Marine fungi have a characteristic structure of metabolites and their ability to bioremediate heavy metals in various processes, namely bioaccumulation, biomineralization, biosorption, and biotransformation. Bioremediation of heavy metals by marine fungi is related to the composition of cell wall structures that have many crosslinking polysaccharides (chitin, chitosan, glucans), glucuronic acid, galactosamine, a small amount of glycoprotein, together with melanin and phenolic polymers containing phenolic units, peptides, fatty acids, which provides quite a lot of oxygen-containing groups such as carboxyl, carbonyl, amino, hydroxyl, phosphate, methoxy and mercapto which are potentially metal binding sites.

Article Details

Section
Articles

References

Amend A., Burgaud G, Cunliffe M,
Edgcomb V. P. Ettinger C. L., Gutierrez M. H., Heitman J, Hom E. F. Y., Laniri G., Jones A. C, Kagami M., Picard K. T., Quandt C. A., Raghukumar S., Riquelme M., Stajich J., Muniz J. V., Walker A. K., Yarden O, & Gladfelter A. S. ( 2019). Fungi in the Marine Environment: Open Questions and Unsolved Problems. Ecological and Evolutionary Science, 10 Issue 2 doi: 10.1128/mBio.01189-18. mbio.asm.org

Ayangbenro, A.S., dan Babalola, O. O.,
2015. Review : A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health, 14, 94; doi:10.3390/ijerph14010094



Balabanova, L., Slepchenko, L.., Son, O.,
Tekutyeva, L. (2018). Biotech-nology Potential of Marine Fungi Degrading Plant and Algae Polymeric Substrates. Frontiers in Microbiology, 9, 1527 https://doi.org/10.3389/fmicb.2018.01527

Barriada J. L., Herrero R., Rodríguez D. P,
Sastre de Vicente M.E.S. ( 2008 ). Interaction of mercury with chitin: A physicochemical study of metal binding by a natural biopolymer. Reactive & Functional Polymers, 68, 1609–1618. https://doi.org/10.1016/j.reactfunctpolym.2008.09.002

Damare S, Singh P, & Raghukumar S
(2012) Biotechnology of marine fungi. Prog Mol Subcell Biol 53, 277–297. doi:10.1007/ 978-3-642-23342-5_14

Deshmukh, R., Khardenavis, A.A.,
Purohit, H.J., 2016. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J Microbiol , 56, 247–264. doi: 10.1007/s12088-016-0584-6


Dixit, R.; Malaviya, D.; Pandiyan, K.;
Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189–2212. https://doi.org/10.3390/su7022189

Fomina, M., & Gadd, G.M. (2014).
Biosorption: current perspectives on concept, definition and application. Bioresource Technology , 160, 3-14 doi: 10.1016/j.biortech.2013.12.102.


Gazem MAH & Nazareth S (2013)
Sorption of lead and copper from an aqueous phase system by marine-derived Aspergillus species. Ann Microbiol 63:503–511. doi:10.1007/s13213-012- 0495-7

Harms H., Schlosser D, & Wick L.Y.,
2011. Untapped Potential: Exploiting Fungi in Bioremediation of Hazardous Chemicals. Nature Reviews, Microbiology volume 9, doi:10.1038/nrmicro2519

Igiri B.I, Okoduwa S.I.R., Idoko G.O.,
Akabuogu E.P., Adeyi A.O., Ejiogu I.K., 2018. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. Journal of Toxicology 2018, https://doi.org/10.1155/2018/2568038



Jaroszuk M. O., Wilkołazka A. J.,
Jaroszuk-S´ciseł J., Szałapata K., Nowak A., Jaszek M., Ozimek E., Majewska M. (2015). Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol, 31, 1823–1844. DOI 10.1007/s11274-015-1937-8

Jones, E.B. Gareth., dan Pang, Ka-Lai.
(2012). Marine Fungi and Fungal-like Organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston


Jones, G., Suetrong, S., Sakayaroj, S.,
Bahkali, A.H., Wahab, A.A.A., Boekhout , T., & Pang, K.L. (2015). Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diversity , DOI 10.1007/s13225-015-0339-4


Lima, M.A., Urbieta, M.S., Donati, E.R.
(2018). Microbial Communities and the Interaction with Heavy Metals and Metalloids: Impact and Adaptation. Book ; Heavy Metals In The Environment (Microorganisms and Bioremediation). CRC Press.

Lotlikar N.P. (2019). Physiological
response of fungi from marine habitats to heavy metals. CSIR- National Institute of Oceanography.

Oladipo, O. G., Awotoye O. O., Olayinka,
A., Bezuidenhout, C.C., Mark Steve Maboeta, M. S., 2018. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49, 29–37. doi: 10.1016/j.bjm.2017.06.003.


Prabhakaran P., Ashraf M.A., Aqma W.S.
Raj K. K., Sardar U. S., Bhargav E., Devi I., Bhunia B., Tiwari O. N. ( 2018). Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydrate Polymers, 199, 353–364. doi: 10.1016/j.carbpol.2018.07.037.

Rodriguez I. A., Gonzalez G. F. C.,
Perez A. S. R., Oviedo J. T., & Juarez V. M. M. (2018) . Bioremoval of Different Heavy Metals by the Resistant Fungal Strain Aspergillus niger. Bioinorganic Chemistry and Applications, Article ID 3457196. https://doi.org/10.1155/2018/3457196

Santos R.C.B., Vasconcelos M.R.S.,
Passarini M.R.Z., Vieira G.A.L, Lopes V.C.P., Mainardi P.H., Santos J.A.S., Duarte L.A., Otero I.V.R., Yoshida A.M.S., Feitosa V.A., Pessoa A., & Sette L.D., (2015). Marine-derived Fungi: Diversity of Enzymes and Biotechnological Applications. Frontiers in Microbiology, 6, 269. https://doi.org/10.3389/fmicb.2015.00269

Thatoi H, Behera BC, & Mishra RR.
(2013). Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4:54–71. doi:10.1080/21501203.2013.785448


US Geological Survey. (2013). Heavy
Metals in the Environment – Historical Trend. E Callender, Westerly, RI, USA Published by Elsevier Ltd. volume 9, pp. 67–105, Published by Elsevier Ltd. Treatise on Geochemistry 2nd Edition http://dx.doi.org/10.1016/B978-0-08-095975-7.00903-7


Yina K., Wang Q., I D., & Chena L. (2019).
Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360, 1553–1563, https://doi.org/10.1016/j.cej.2018.10.226

Wang, J., & Chen, C. (2006). Biosorption
of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24, 427–451. DOI: 10.1016/j.biotechadv.2006.03.001


Zehra, A., Dubey, M.K., Meena, M.,
Aamir, M., Patel, C.B., Upadhyay, R.S. (2018). Role of Penicillium Species in Bioremediation Processes. New and Future Developments in Microbial. Biotechnology and Bioengineering. 247-268. DOI: http://dx.doi.org/10.1016/B978-0-444-63501-3.00014-4,