UJI KONSENTRASI HAMBAT MINIMUM (KHM) DAN KONSENTRASI BUNUH MINIMUM (KBM) DARI EKSTRAK ETANOL DAUN KIRINYUH (Chromolaena odorata L) TERHADAP BAKTERI Staphylococcus epidermidis

Nora Silva Inanta^{1*}, Bhayu Gita Bhernama¹, Muslem¹

¹Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Indonesia

*E-mail: norasilvainantansi29@gmail.com

Abstract: The kirinyuh plant is a wild plant that is easy to find and has not been utilized optimally because this plant is considered a weed. Kirinyuh leaves contain chemical compounds such as alkaloids, flavonoids, saponins, steroids, terpenoids and tannins. These compounds can function as antibacterials. The aim of this research was to determine the Minimum Inhibitory Concentration and Minimum Kill Concentration in Staphylococcus epidermidis bacteria. This research used an experimental method on Staphylococcus epidermidis bacteria with the extract concentrations used were 100%, 50%, 25%, 12.5% and 6.25% using the dilution method. Data analysis was carried out descriptively in the form of the lowest concentration of extract that was able to inhibit and kill Staphylococcus epidermidis bacteria. The test results showed that the ethanol extract of kirinyuh leaves from the Blang Bintang area, Aceh Besar Regency, had a Minimum Inhibitory Concentration against Staphylococcus epidermidis bacteria. In testing, extracts with a concentration of 6.25% to 12.5% showed turbidity, indicating bacterial growth. In contrast, at concentrations of 25% to 100%, no turbidity was visible, indicating the absence of bacterial growth. The lowest concentration that does not show turbidity and bacterial growth, namely 25%, is designated as the MIC. Next, to determine the Minimum Kill Concentration, testing is carried out in a concentration range of 6.25% to 25%, where there is still bacterial growth. At a concentration of 50%, no bacterial growth began to be seen. Finally, at a concentration of 100%, it was proven that there was no growth of Staphylococcus epidermidis bacteria. The conclusion of this research is that the inhibition value for the Minimum Inhibitory Concentration is 25% and the Minimum Kill Concentration for Staphylococcus epidermidis bacteria is 100%.

Keywords: Chromolaena odorata L, Antibacterial, Inhibitory Concentration Minimum, Minimum Kill Concentration, AStaphylococcus epidermidis.

Abstrak: Tanaman kirinyuh adalah tanaman liar yang mudah ditemui dan belum dimanfaatkan secara optimal dikarenakan tanaman ini dianggap sebagai gulma. Daun kirinyuh mengandung senyawa kimia seperti alkaloid, flavonoid, saponin, steroid, terpenoid dan tanin. Senyawa-senyawa tersebut dapat berfungsi sebagai antibakteri. Tujuan dari penelitian ini adalah untuk mengetahui Konsentrasi Hambat Minimum dan Konsentrasi Bunuh Minimum

pada bakteri Staphylococcus epidermidis. Penelitian ini menggunakan metode eksperimental terhadap bakteri Staphylococcus epidermidis konsentrasi ekstrak yang digunakan adalah 100%, 50%, 25%, 12,5% dan 6,25% dengan metode dilusi. Analisis data dilakukan secara deskriptif berupa konsentrasi terendah dari ekstrak yang mampu menghambat dan membunuh bakteri Staphylococcus epidermidis. Hasil penelitian menunjukkan bahwa ekstrak etanol daun kirinyuh dari kawasan Blang Bintang, Kabupaten Aceh Minimum Besar. memiliki Konsentrasi Hambat terhadap Staphylococcus epidermidis. Dalam pengujian, ekstrak dengan konsentrasi 6,25% hingga 12,5% menunjukkan kekeruhan, menandakan adanya pertumbuhan bakteri. Sebaliknya, pada konsentrasi 25% hingga 100%, tidak terlihat kekeruhan, yang menunjukkan ketiadaan pertumbuhan bakteri. Konsentrasi terendah yang tidak menunjukkan kekeruhan dan pertumbuhan bakteri, yaitu 25%, ditetapkan sebagai KHM. Selanjutnya, untuk menentukan Konsentrasi Bunuh Minimum, pengujian dilakukan pada rentang konsentrasi 6.25% hingga 25%, di mana masih terdapat pertumbuhan bakteri. Pada konsentrasi 50%, mulai tidak terlihat adanya pertumbuhan bakteri. Terakhir, konsentrasi 100%. terbukti tidak ada pertumbuhan Staphylococcus epidermidis. Kesimpulan penelitian ini bahwa nilai hambatan pada Konsentrasi Hambat Minimum adalah sebesar 25% dan Konsentrasi Bunuh Minimum pada bakteri Staphylococcus epidermidis sebesar 100%.

Kata Kunci: Daun kirinyuh, Antibakteri, Konsentrasi Hambat Minimum Konsentrasi Bunuh Minimum, Staphylococcus epidermidis

PENDAHULUAN

Indonesia adalah negara kepulauan yang kaya akan jenis tanaman yang dapat digunakan sebagai bahan obat. Tanaman obat tradisional di Indonesia mempunyai peran yang sangat penting terutama bagi masyarakat pedesaan yang fasilitas kesehatannya masih terbatas. Masyarakat melakukan Indonesia telah lama penyembuhan penyakit tradisional dengan menggunakan sebagian atau seluruh tanaman. Penyembuhan penyakit secara tradisional ini telah diwariskan secara turun temurun dari generasi ke generasi. Masyarakat Indonesia menggunakan tanaman sebagai bahan obat, karena relatif lebih aman dibandingkan obat sintetis dan tidak memiliki efek samping. Tanaman obat yang sudah dikenal masyarakat dan sering digunakan adalah tanaman kirinyuh (Gultom dkk. 2020).

Tanaman kirinyuh adalah tanaman liar yang mudah ditemui, belum dimanfaatkan secara optimal dikarenakan tanaman ini dianggap sebagai gulma.

Tanaman kirinyuh tumbuh berkembang sangat cepat sehingga merugikan lainnya. Meskipun demikian, tanaman tanaman kirinyuh ini juga memiliki potensi medis yaitu sebagai obat luka, obat kumur, antidiare, antimikroba, antihipertensi dan anti inflamasi (Yenti dkk. 2011). Tanaman kirinyuh mengandung beberapa senyawa utama seperti flavonoid, alkaloid, steroid, terpenoid, saponin dan tanin. Flavonoid dan tanin memiliki sifat antibakteri dan antivirus. Flavonoid dan tanin mampu menghambat pertumbuhan bakteri dengan cara merusak permiabilitas dinding sel bakteri (Hidayatullah, 2018).

Purnama dkk. (2011) melaporkan bahwa ekstrak daun kirinyuh mampu menghambat pertumbuhan bakteri *Staphylococcus sp.* Uji sensitivitas dengan metode *in vitro* menunjukkan terbentuknya zona hambat di sekitar kertas cakram yang telah disebar *Staphylococcus sp.* dengan kepadatan 108 CFU/mL. Percobaan dengan konsentrasi ekstrak 20.000 ppm menghasilkan diameter zona hambat kategori kuat yaitu sebesar 17,37 mm.

Rahayu (2017) melaporkan bahwa ekstrak etanol daun kirinyuh dengan 90%, konsentrasi ketika diuji menggunakan metode difusi, menunjukkan efektivitas yang signifikan dalam menghambat Staphylococcus aureus. terbukti dengan terbentuknya zona hambat kuat dengan rata-rata diameter 11,5 mm.

Sementara itu, Fadia dkk (2020) menggunakan metode berbeda melaporkan bahwa pada konsentrasi 96%, ekstrak etanol daun kirinyuh menunjukkan hasil yang menjanjikan dalam pengujian aktivitas antibakteri menggunakan metode dilusi. dengan Konsentrasi Hambat Minimum sebesar 20% dan Konsentrasi Bunuh Minimum sebesar 40% terhadap Salmonella typhi dan Staphylococcus aureus. Dari temuan ini, dapat disimpulkan bahwa ekstrak etanol daun kirinyuh memegang potensi sebagai agen antibakteri yang efektif, menawarkan prospek menjanjikan sebagai obat herbal dalam mengatasi infeksi bakteri.

Salah satu bakteri lain yang cukup banyak dilaporkan sebagai penyebab infeksi adalah Staphylococcus epidermidis. Bakteri Staphylococcus epidermidis adalah pantogen yang sering mengakibatkan infeksi kulit, terutama luka pada manusia. Secara alami, bakteri ini ditemukan di membran kulit dan membran mukosa manusia sebagai bagian dari flora normal. Namun, jika bakteri ini terdapat di lokasi yang tidak seharusnya atau dalam kondisi tertentu seperti menurunnya kekebalan tubuh atau kurangnya sanitasi, maka bakteri ini dapat menyebabkan infeksi (Antika, 2019).

Wulaisfa & Hasnawati (2017) melaporkan bahwa pada pertumbuhan bakteri Staphylococcus epidermidis daun menggunakan ekstrak sukun (Artocarpus altilis) dapat menghambat pertumbuhan bakteri Staphylococcus epidermidis pada kulit yang menghasilkan zona hambat pada konsentrasi masingmasing 10%, 15% dan 20% dengan nilai berturut turut yakni 4,39 mm, 5,37 mm dan 6,59 mm dengan katagori sedang.

Berdasarkan latar belakang diatas, penulis tertarik melakukan penelitian "Uji Konsentrasi Hambat Minimum (KHM) dan Konsentrasi Bunuh Minimum (KBM) dari ekstrak etanol daun kirinyuh (*Chromolaena* odorata L) terhadap bakteri Staphylococcus epidermidis"

METODE

Waktu dan Tempat

Penelitian ini dilaksanakan pada bulan Maret-Juni 2023. Penelitian ini menggunakan metode eksperimental yang dilaksanakan pada Laboratorium Kimia dan Biologi Multifungsi Universitas Islam Negeri Ar-Raniry dan sampel daun kirinyuh didapatkan di kawasan Blang Bintang, Kabupaten Aceh Besar.

Alat dan Bahan

Alat

Alat- alat yang digunakan dalam penelitian ini adalah erlenmeyer (pyrex), toples, rotary evaporator (B-ONE), tabung reaksi (pyrex), rak tabung, cawan petri, blender (TD), pipet ukur (pyrex), kawat ose, bunsen, korek api, gelas ukur (pyrex), batang pengaduk, inkubator (LabTech), autoklaf (GEA), neraca analitik (BEL), hot plate, aluminium foil, batang L, spatula, kertas HVS, colony counter, seperangkat instrumen Fourier

Bahan

digunakan Bahan-bahan yang dalam penilitian ini adalah daun kirinyuh (Chromolaena odorata L), etanol (C_2H_5O) 96% E-merck teknik, air (H₂O), bakteri Staphylococcus epidermidis, kertas saring, tisu, kapas, medium *Nutrien agar*, medium Nutrien broth, serbuk magnesium (Mg) Emerck pro analysis, asam klorida pekat (HCI) *E-merck pro analysis*, natrium klorida (NaCl) 0,9% merck MJB Pharma, barium klorida (BaCl₂) 1,175%, tetrasiklin $(C_{22}H_{24}N_2O_8)$, pereaksi Maver. klorida (HCI) 2N, asam sulfat pekat (H₂SO₄), asam asetat (CH₃COOH) dan

besi (III) klorida (FeCl₃) *E-merck pro analysis* dan label *name*.

Prosedur Kerja

Pengambilan Sampel

Daun kirinyuh diambil di kawasan Blang Bintang, Kabupaten Aceh Besar. Pengambilan sampel dilakukan secara manual dengan cara memetik daun, daun yang sudah matang yaitu daun ke empat dan seterusnya hal ini dilakukan karena pada daun tersebut telah mengalami pematangan fisiologis sehingga memiliki kandungan metabolit sekunder yang maksimal (Manguntungi dkk. 2016).

Identifikasi Taksonomi

Sampel tanaman daun kirinyuh sebelum diteliti dilakukan taksonomi di Laboratorium Biologi, Fakultas Sains dan Teknologi Universitas Islam Negeri Ar-Raniry Banda Aceh menggunakan identifikasi morfologi dan perbandingan gambar.

Preparasi Sampel

Daun kirinyuh sebanyak 1 kg dibersihkan terlebih dahulu, kemudian di keringkan anginkan pada suhu kamar hingga kering tanpa kontak langsung dengan sinar matahari. Selanjutnya sampel daun kirinyuh yang sudah kering dipotong menjadi kecil lalu dihaluskan hingga diperoleh serbuk, serbuk yang dihasilkan diayak menggunakan ayakan mesh 50 (Frastika dkk., 2017).

Pembuatan Ekstrak Daun Kirinyuh

Proses ekstraksi dilakukan dengan metode maserasi, dimana serbuk daun kirinyuh disiapkan sebanyak 500 gram, lalu lakukan perendaman selama 3 hari dengan pelarut etanol 96% sebanyak 2000 mL ditutup dengan aluminium foil pada suhu ruang tanpa kontak langsung dengan sinar matahari. Selanjutnya, dilakukan

pengadukan 2 kali dalam sehari. Hasil maserasi yang diperoleh disaring dengan menggunakan kertas saring dan diperoleh maseratnya. Selanjutnya maserat yang diperoleh dipekatkan dengan menggunakan *rotary evaporator* pada suhu 60°C agar dapat menghilangkan pelarut yang ada sehingga dapat diperoleh ekstrak yang kental. Ekstrak kental yang diperoleh diambil sedikit untuk dilakukan uji fitokimia (Handayany, 2016).

$$Rendemen = rac{Berat\ ekstrak\ kental}{Berat\ sampel} imes 100\%$$

Identifikasi dengan Fourier Transform-Infra Red (FTIR)

Ekstrak daun kirinyuh yang dihasilkan dianalisis menggunakan FTIR mengetahui gugus fungsi yang terdapat pada ekstrak daun kirinyuh pada panjang gelombang 4000-400 cm⁻¹. Hasil analisis ini berupa *peak* yang menunjukkan gugusgugus dari spektra yang dihasilkan pada rentang daerah serapan tertentu.

Skrining Fitokimia

Uji Flavonoid

Sebanyak 0,1 g ekstrak daun kirinyuh dimasukkan ke dalam tabung reaksi, ditambahkan 10 mL H₂O, dididihkan selama 5 menit, kemudian disaring. Filtrat ditambahkan 0,1 g serbuk Mg dan 1 mL HCl pekat. Kemudian dikocok. Uji positif ditunjukkan dengan terbentuknya warna merah, kuning atau jingga (Kurang & Penlaana, 2022).

Uji Alkaloid

Sebanyak 0,1 g ekstrak daun kirinyuh dimasukkan ke dalam tabung reaksi kemudian ditambahkan 1 mL HCl 2N dan 6 mL H₂O, kemudian dipanaskan selama 2 menit, didinginkan kemudian disaring. Filtrat yang dihasilkan ditambahkan dengan 2 tetes pereaksi mayer. Terbentuk endapan putih

kekuningan menunjukan adanya alkaloid (Kurang & Penlaana, 2022).

Uji Steroid dan Terpenoid

Sebanyak 0,1 g ekstrak daun kirinyuh dimasukkan kedalam 2 tabung reaksi dan masing-masing tabung ditambahkan 2 tetes CH₃COOH kemudian dihomogenkan. setelah itu diteteskan 1-2 tetes H₂SO₄ pekat kemudian diamati warna yang terbentuk. Positif steroid apabila terbentuk warna biru atau hijau, sedangkan uji terpenoid memberikan warna merah, coklat kemerahan atau ungu (Yulianti dkk. 2017).

Uji Saponin

Sebanyak 0,1 g ekstrak daun kirinyuh dimasukkan ke dalam tabung reaksi, ditambahkan 10 mL H₂O hangat lalu dikocok selama 30 detik. Uji positif ditunjukkan dengan terbentuknya busa permanen ± 15 menit (Frastika dkk. 2017).

Uji Tanin

Sebanyak 0,1 g ekstrak daun kirinyuh dimasukan kedalam tabung reaksi dan ditambahkan FeCl₃ sebanyak 2 tetes. Adanya senyawa tanin ditandai dengan terbentuknya warna hijau kebiruan (Frastika dkk. 2017).

Pengujian Aktivitas Antibakteri Ekstrak Etanol Daun Kirinyuh dengan Metode Dilusi

Sterilisasi Alat

Peralatan yang digunakan dalam penelitian uji aktivitas antibakteri ini harus menjalani proses sterilisasi dahulu. Peralatan gelas dan media disterilkan menggunakan autoklaf pada suhu 121°C selama 15 menit, sementara ose dibakar di atas api langsung (Nuraina, 2015).

Pembuatan Medium *Nutrient Agar* (NA)

Untuk mempersiapkan medium Nutrient Agar, media Nutrient Agar seberat 8,81 g diukur dilarutkan dalam 300 mL H₂O dalam sebuah erlenmeyer. Kemudian, campuran dipanaskan di atas hotplate lalu disterilkan hingga homogen, menggunakan autoklaf pada suhu 121°C selama 20 menit untuk mencegah pertumbuhan mikroorganisme yang tidak diinginkan. Setelah proses sterilisasi selesai, media dapat dituangkan secara aseptis dalam cawan petri dengan volume sebanyak 20 mL. Sebelum menuang tunggu hingga mencapai suhu (± 40°C) lalu dibiarkan pada suhu ruang hingga media memadat dengan sempurna (Juariah & Sari, 2018).

Pembuatan Medium *Nutrient Broth* (NB)

Untuk persiapan *Nutrient Broth*, 1,3 g media *Nutrient Broth* dilarutkan dalam 100 mL H₂O. Larutan dihomogenkan hingga bubuk benar-benar larut. Selanjutnya, larutan dimasukkan ke dalam tabung reaksi dan disubjekkan pada proses sterilisasi dengan menggunakan autoklaf pada suhu 121°C selama 20 menit (Novianty dkk. 2020)

Peremajaan Bakteri Uji

Mikroorganisme uji diinkubasi pada medium *Nutrient Agar*. Mikroba uji ditanam sebanyak beberapa ose dengan cara menggores secara zig-zag ke atas permukaan medium *Nutrient Agar* dan di inkubasi pada suhu 37°C selama 24 jam (Nuraina. 2015).

Pembuatan Suspensi Bakteri

Pembuatan suspensi bakteri diambil dengan cara menggores secara zig-zag dari *Nutrient Agar* dimasukan kedalam tabung yang berisi 15 mL larutan NaCl 0,9% disesuaikan dengan standar kekeuhan *Mc. Farland 0,5* (Pinta dkk. 2017).

Pembuatan Standar Kekeruhan (Larutan Mc. Farland 0,5)

Larutan H₂SO₄ 1% sebanyak 9,95 mL dicampur dengan larutan BaCl₂ 1,175% sebanyak 0,05 mL dalam sebuah tabung reaksi. Campuran kemudian dikocok hingga membentuk larutan yang keruh. Kekeruhan ini digunakan sebagai standar untuk kekeruhan suspensi bakteri uji (Pinta dkk. 2017).

Pembuatan Kontrol Positif Tetrasiklin

Dengan berat sebanyak 1 mg, tetrasiklin dilarutkan dalam 1 mL H₂O steril. Selanjutnya, ambil 1 mL larutan tetrasiklin dan campurkan dengan 1 mL *Nutrient Broth*, lalu tambahkan 1 mL suspensi bakteri uji. Lakukan pengadukan (vortex) hingga campuran homogen (Nuraina, 2015).

Pembuatan Kontrol Negatif H₂O

Sebanyak 1 mL H₂O ditambahkan 1 Nutrient Broth dan ditambahkan 1 mL suspensi bakteri uji kemudian divortex hingga homogen (Nuraina, 2015)

Uji Aktivitas Antibakteri Dengan Seri Konsentrasi

Terdapat 5 konsentrasi ekstrak daun kirinyuh yang akan diuji, meliputi 100%, 50%, 25%, 12,5% dan 6,25%. Proses pengenceran dilakukan secara bertahap yang diawali dengan kelompok perlakuan 1 (P1) konsentrasi 100% dengan memasukan mL ekstrak 1 dicampur dengan 1 mL nutrient broth dan divortex. Selanjutnya 1 mL dari campuran (P1) dipindahkan ke tabung kedua (P2) yang juga berisi 1 mL nutrient broth untuk menghasilkan konsentrasi 50%. Proses pengenceran ini diulangi untuk tabung P3 (25%), P4 (12.5%), dan P5 (6.25%). Dari tabung P5, 1 mL larutan dibuang, sehingga setiap tabung memiliki 1 mL nutrient broth vang bercampur dengan ekstrak. Kemudian, tambahkan 1 mL suspensi bakteri ke setiap tabung dan inkubasi selama 24 jam pada 37°C. Hasilnya dibandingkan dengan kontrol positif tetrasiklin dan kontrol negatif H₂O (Warella dkk. 2020)

Penentuan Konsentrasi Hambat Minimum (KHM)

Konsentrasi Hambat Minimum adalah konsentrasi ekstrak minimum untuk menghambat pertumbuhan antibakteri setelah diinkubasi selama 24 jam. Penentuan Konsentrasi Hambat Minimum dilakukan dengan mengambil semua kelompok perlakuan yang diinkubasi, memvortex setiap tabung konsentrasi yang berbeda, dan mengamati konsentrasi terkecil untuk menghambat pertumbuhan bakteri yang ditandai secara visual. Konsentrasi pada saat bahan uji mulai menunjukkan tidak adanya kekeruhan (kejernihan) pada tingkat dianggap sebagai Konsentrasi Hambat Minimum (Warella dkk. 2020).

Penentuan Konsentrasi Bunuh Minimun (KBM)

Untuk menentukan Konsentrasi Bunuh Minimum, ambil sampel dari larutan pada konsentrasi 100%, 50%, 25%, 12,5% dan 6,25% dari Konsentrasi Hambat Minimum. Diambil masing-masing 0,1 mL konsentrasi untuk tiap kemudian diteteskan pada cawan petri yang berisi masing-masing sebanyak 20 mL Nutrient Agar dan diratakan dengan drigalski. Selanjutnya di inkubasi dalam inkubator pada suhu 37°C selama 24 iam. Konsentrasi bahan uji yang dapat dapat ditentukan membunuh bakteri dengan mengamati jumlah koloni yang terbentuk. Dalam perhitungan ini, bila bentuk koloni melebar dianggap sebagai 1 koloni. sedangkan jika dua koloni bersentuhan dianggap sebagai 2 koloni. Konsentrasi terendah yang dapat membunuh bakteri dinyatakan sebagai Konsentrasi Bunuh Minimum. Perhitungan bakteri iumlah koloni dilakukan menggunakan alat perhitungan koloni (colony counter) (Pinta dkk. 2017).

HASIL DAN PEMBAHASAN

Hasil Uji Taksonomi Daun Kirinyuh

Berikut tabel hasil uji taksonomi pada sampel daun kirinyuh yang telah dilakukan pada Laboratorium Biologi Multifungsi UIN Ar-Raniry Banda Aceh.

Tabel 1. Hasil Klasifikasi Daun Kirinyuh

Tabel I. Hasii Masiilkasi Dauli Milliyuli			
Klasifikasi	Hasil		
Kingdom	Plantae		
Superdivisi	Spermatophyta		
Divisi	Magnoliophyta		
Kelas	Magnoliopsida		
Ordo	Asterales		
Familia	Asteraceae		
Genus	Chromolaena		
Spesies	Chromolaena odorata		
	(L)		
Nama lokal	Rumput		
	minjangan/kirinyuh		

Hasil Ekstraksi Daun Kirinyuh

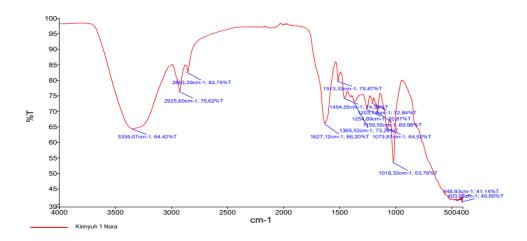
Berikut hasil data proses ekstrak daun kirinyuh 500 g dengan proses maserasi dapat dilihat pada Tabel 2.

Tabel 2. Hasil Ekstraksi Daun Kirinyuh

Tabel Eller					
Massa	Berat	Rendemen			
Serbuk Daun	Ekstrak				
Kirinyuh					
500 g	39,1048 g	7,82096 %			

Gambar 1. Ekstrak Kental Daun Kirinyuh

Hasil Uji Skrining Fitokimia


Berikut tabel hasil uji skrining fitokimia dari ekstrak etanol daun kirinyuh.

Tabel 3. Hasil uji skrining fitokimia daun kirinyuh

No	Uji	Hasil	Keterangan
1	Flavonoid	+	Terbentuknya warna jingga
2	Alkaloid	+	Terbentuknya endapan putih kekuningan
3 4	Steroid Terpenoid	+	Terbentuknya warna hijau Terbentuknya warna
			coklat kemerahan.
5	Saponin	+	Terbentuknya busa permanen
6	Tanin	+	Terbentunya larutan berwarna hijau kebiruan

Keterangan: (+) = positif mengandung senyawa (-) = negatif mengandung senyawa

Sesuai dengan data yang tercantum dalam Tabel 3, skrining fitokimia pada daun kirinyuh mengindikasikan keberadaan senyawa metabolit sekunder. Hal ini diperkuat oleh hasil yang diperoleh dari FTIR.

Gambar 2. Hasil Spektrum FTIR dari Ekstrak Daun Kirinyuh

Hasil Analisis Fourier Transform-Infra Red (FTIR) Ekstrak Daun Kirinyuh

Hasil identifikasi FTIR pada ekstrak daun kirinyuh dari kawasan Blang Bintang, Aceh Besar menunjukkan serapan OH pada bilangan gelombang 3339, 07 cm-1 yang diduga berasal dari senyawa fenol, flavonoid dan steroid. Sedangkan rentang bilangan gelombang 2925,60 cm-1 -2853,29 cm-1 menunjukkan kategori C-H alifatis. Serapan pada bilangan gelombang 1627,12 cm⁻¹- 1513,33 cm⁻¹ menunjukan ikatan C=C aromatis yang diduga berasal kandungan senyawa terpenoid. 1365,53 Bilangan gelombang menunjukkan serapan sediaan C-H yang diduga memiliki kandungan senyawa steroid dan terpenoid. Bilangan gelombang $1203,74 \text{ cm}^{-1} - 1018,33 \text{ cm}^{-1} \text{ intensitas}$ lemah menunjukkan adanya serapan C-O yang diduga memiliki kandungan senyawa alkaloid didalam ekstrak daun kirinyuh. (Ance dkk. 2018)

Berdasarkan interpretasi tersebut, dapat disimpulkan bahwa ekstrak daun Kirinyuh mengandung berbagai senyawa organik, termasuk asam fenolat, flavonoid, asam lemak, triterpenoid, steroid, aldehida, keton, dan ester. Senyawa-senyawa ini memiliki berbagai potensi manfaat bagi kesehatan, seperti antioksidan, antiinflamasi, antimikroba, dan antikanker.

Hasil Uji Konsentrasi Hambat Minimum terhadap bakteri *Staphylococcus epidermidis*

Pengujian Konsentrasi Hambat Minimum terhadap bakteri Staphylococcus epidermidis dilakukan dengan menggunakan metode dilusi untuk mengevaluasi pengaruh ekstrak daun kirinyuh terhadap pertumbuhan bakteri Staphylococcus epidermidis. Konsentrasi terkecil dianggap sebagai Konsentrasi Hambat Minimum ketika larutan mulai menunjukkan tidak adanya kekeruhan. Konsentrasi Hambat Minimum terhadap bakteri Staphylococcus epidermidis dapat dilihat pada Tabel 4.

Tabel 4. Hasil Konsentrasi Hambat Minimum terhadap bakteri Staphylococcus epidermidis

No	Konsentrasi	Hasil	KHM
1	100%	Kuning Pekat (tidak keruh)	
2	50%	Kuning Sedikit Pekat (tidak keruh)	
3	25%	Kuning Sedikit Muda (tidak keruh)	25%
4	12,5%	Kuning Muda (keruh)	
5	6,25%	Kuning Paling Muda (keruh)	
6	K (+)	Kuning Jernih (tidak keruh)	
7	K (-)	Bening Keruh (keruh)	

Berdasarkan Tabel 4, bahwa konsentrasi terkecil yang mulai terjadi tidak adanya kekeruhan terdapat konsentrasi 25% yang ditandai secara visual. Dengan melihat secara visual peneliti dapat melihat efek dari zat antimikroba pada bakteri Staphylococcus visual epidermidis. Pengamatan membantu mengidentifikasi perubahan dalam kultur bakteri yang menunjukkan adanya hambatan.

Hasil Uji Konsentrasi Bunuh Minimum terhadap bakteri *Staphylococcus* epidermidis

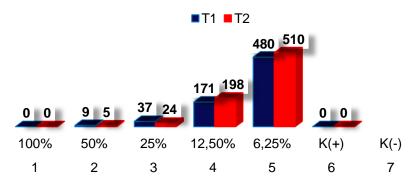
Pengujian Konsentrasi Bunuh Minimum pada bakteri Staphylococcus epidermidis dilakukan untuk mengevaluasi pengaruh ekstrak daun kirinyuh dalam mematikan pertumbuhan bakteri Staphylococcus epidermidis. Evaluasi dilakukan dengan menghitung jumlah koloni bakteri yang terbunuh dan

memastikan ketiadaan pertumbuhan bakteri.

Tabel 5. Hasil Perhitungan Koloni pada Konsentrasi Bunuh Minimum terhadap Bakteri S. epidermidis

No	Kelompok Perlakuan				Konsent	rasi		
		100%	50%	25%	12,5%	6,25%	K (+)	K (-)
1	T1	0	9	37	171	480	0	∞
2	T2	0	5	24	198	510	0	∞

Keterangan: ∞ = Jumlah koloni tak terhingga


Berdasarkan Tabel 5. bahwa bakteri Staphylococcus epidermidis tidak tumbuh di konsentrasi 100%. Perhitungan bakteri yang peneliti gunakan untuk melihat dan menghitung bakteri Staphylococcus epidermidis mengunakan colony counter. Colony counter adalah alat atau perangkat yang digunakan untuk menghitung jumlah koloni bakteri atau mikroorganisme lain yang tumbuh pada media kultur. Dalam uji laboratorium seperti uji Konsentrasi Bunuh Minimum, serta dalam berbagai penelitian mikrobiologi, seringkali diperlukan untuk mengukur dan menghitung jumlah koloni bakteri yang tumbuh pada media agar setelah perlakuan dengan zat antimikroba atau substansi lain.

Berdasarkan Tabel 4 pada tabung 100%, 50%, 25%, 12,5% dan 6,25% diperoleh warna yang berbeda pada setiap tabung. Peningkatan warna disebabkan oleh peningkatan konsentrasi ekstrak. Semakin tinggi kadar konsentrasi ekstrak. warnanya akan menjadi lebih pekat. Larutan vang mulai tidak adanya kekeruhan terdapat pada konsentrasi 25% yang ditandai secara visual. Dengan melihat secara visual peneliti dapat melihat efek dari zat antimikroba pada bakteri Staphylococcus epidermidis. Pengamatan visual ini membantu mengidentifikasi perubahan dalam kultur bakteri yang menunjukkan adanya hambatan. Hasil pengujian menunjukkan bahwa ekstrak etanol daun kirinyuh dari kawasan Blang Bintang, Kabupaten Aceh Besar, memiliki Konsentrasi Hambat Minimum terhadap bakteri Staphylococcus epidermidis. Dalam pengujian, ekstrak dengan konsentrasi 6,25% hingga 12.5% menunjukkan kekeruhan, menandakan adanya pertumbuhan bakteri. Sebaliknya, pada konsentrasi 25% hingga 100%, tidak terlihat kekeruhan, yang menunjukkan pertumbuhan bakteri. ketiadaan Konsentrasi terendah yang tidak menunjukkan kekeruhan dan pertumbuhan bakteri, yaitu 25%, ditetapkan sebagai Konsentrasi Hambat Minimum. Konsentrasi terendah di mana tidak ada pertumbuhan bakteri yang terlihat tidak adanya kekeruhan ditetapkan sebagai Konsentrasi Hambat Minimum. karena itu. nilai Konsentrasi Hambat Minimum terdapat pada konsentrasi 25%. Penentuan Konsentrasi Hambat Minimum penting dalam ekstrak tanaman obat karena ini menunjukkan konsentrasi antibiotik terendah yang masih mampu menghambat pertumbuhan organisme tertentu (Saputera dkk. 2019).

Selanjutnya berdasarkan Tabel 5 pada uii Konsentrasi Bunuh Minimum bahwa bakteri Staphylococcus epidermidis tidak tumbuh di konsentrasi Perhitungan bakteri yang peneliti gunakan untuk melihat dan menghitung bakteri Staphylococcus epidermidis mengunakan colony counter. Colony counter adalah alat atau perangkat yang digunakan untuk menghitung jumlah koloni bakteri atau mikroorganisme lain yang tumbuh pada media kultur. Dalam uji laboratorium seperti uji Konsentrasi Bunuh Minimum, penelitian serta dalam berbagai mikrobiologi, seringkali diperlukan untuk mengukur dan menghitung jumlah koloni bakteri yang tumbuh pada media agar setelah perlakuan dengan zat antimikroba

atau substansi lain. Adapun pertumbuhan bakteri *Staphylococcus epidermidis* dapat dilihat pada gambar 3.

Pertumbuhan Bakteri Staphylococcus epidermidis

Gambar 3. Hubungan persen (%) konsentrasi daun kirinyuh dan pertumbuhan bakteri *Staphylococcus epidermidis*

Keterangan:

T1 : Tabung ulangan 1
T2 : Tabung ulangan 2
K (+) : Kontrol positif
K (-) : Kontrol negatif

Berdasarkan gambar 3 diatas pada konsentrasi 100% tidak terdapat adanya pertumbuhan bakteri pada T1 dan T2, pada konsentrasi 50% terdapat adanya 9 koloni yang tumbuh di T1 dan 5 koloni yang tumbuh di T2, kemudian pada konsentrasi 25% pada T1 terdapat pertumubuhan koloni sebanyak 37 dan pada T2 sebanyak 24 koloni, selanjutnya pada konsentrasi 12.5% bakteri yang tumbuh pada T1 sebanyak 171 koloni dan T2 sebanyak 198 sedangkan koloni bakteri, konsentrasi 6,25% koloni yang tumbuh pada T1 sebanyak 480 koloni dan T2 sebanyak 510 koloni. Pada K (+) tidak adanya pertumbuhan koloni bakteri dan pada K (-) bakteri yang tumbuh tak terhingga.

pertumbuhan Hasil bakteri epidermidis Staphylococcus atas menunjukkan bahwa untuk menentukan Konsentrasi Bunuh Minimum, penguijan dilakukan pada rentang konsentrasi 6,25% hingga 25%, di mana masih terdapat pertumbuhan bakteri. Pada konsentrasi 50%. mulai tidak terlihat adanya bakteri. pertumbuhan Terakhir, pada konsentrasi 100%, terbukti tidak ada pertumbuhan bakteri Staphylococcus epidermidis. Jadi dapat disimpulkan bahwa pada konsentarsi 100% memiliki hambatan yang paling besar dalam membunuh pertumubuhan bakteri *Staphylococcus epidermidis*. Dengan demikian, hasil penelitian ini menujukkan bahwa semakin tinggi konsentrasi ekstrak semakin besar penghambatan terhadap pertumbuhan bakteri *Staphylococcus epidermidis* (Pinta dkk., 2017).

Hasil penelitian ini cukup berbeda dengan hasil penelitian yang dilakukan Warella dkk. (2020)menunjukkan bahwa ekstrak Selaginella plana (Desv.ex Poir.) Hieron memiliki potensi sebagai antimikroba dalam uii Konsentrasi Hambat Minimum. Dengan konsentrasi 100%, 50%, 25%, dan 12,5%, efektif menghambat ekstrak ini pertumbuhan Staphylococcus aureus, dan pada konsentrasi 100% dan 50%, mampu menghambat pertumbuhan (Methicillin-Resistant Staphylococcus aureus). Selanjutnya, dalam Konsentrasi Bakterisida Minimum, ekstrak Hieron Selaginella plana iuga menunjukkan potensi sebagai bakterisida. Dengan konsentrasi 100%, 50%, 25%, dan 12,5%, ekstrak ini dapat mematikan

pertumbuhan *Staphylococcus aureus*. Namun, hasilnya negatif terhadap MRSA, dengan pertumbuhan koloni yang tetap pada konsentrasi 100% dan 50%.

Fadia dkk. (2020) juga melaporkan bahwa ekstrak daun kirinyuh mempunyai daya hambat terhadap pertumbuhan bakteri Salmonella typhi dan Stapylococcus aureus, di mana nilai Minimum Konsentrasi Hambat dan Konsentrasi Bunuh Minimum dari ekstrak etanol daun kirinyuh ini diperoleh dari Sungai Besar, Banjar Baru Selatan, Indonesia. Hasil penelitian menunjukkan Konsentrasi Hambat Minimum terdapat pada konsentrasi 20% dan Konsentrasi Bunuh Minimum sebesar 40%. Hal ini disebabkan karena adanya perbedaan yang terdapat pada daun kirinyuh yang digunakan dalam membuat ekstrak. Perbedaan dalam ekstrak dapat disebabkan oleh variasi lingkungan tempat pertumbuhan tanaman kirinyuh, tanaman saat panen dan usia daun yang digunakan dalam proses ekstraksi.

Lingkungan tempat pertumbuhan tanaman kirinyuh sangat berpengaruh terhadap komposisi ekstrak dihasilkan oleh tanaman tersebut. Kirinyuh tumbuh secara alami di lahan terbuka. lingkungan pertumbuhannya sehingga tidak dan dikontrol. Kondisi lingkungan yang tak terkendali ini dapat menyebabkan stres pada tanaman, termasuk cekaman kekeringan yang sering terjadi. Ketika tanaman menghadapi kekeringan, mereka akan mengaktifkan berbagai mekanisme pertahanan. termasuk merangsang produksi metabolit sekunder. Selain itu, komposisi ekstrak dalam tanaman juga dipengaruhi oleh unsur hara terkandung dalam tanah. Elemen hara makro dalam tanah seperti Nitrogen (N), Kalium (K), bahan organik dan Karbon (C) memiliki korelasi linier dengan produksi metabolit sekunder dalam tanaman (Salim dkk. 2016).

Ekstrak daun kirinyuh menunjukkan aktivitas antibakteri terhadap Staphylococcus epidermidis karena mengandung berbagai senyawa metabolit sekunder. Hasil skrining fitokimia

menunjukkan bahwa ekstrak etanol dari daun kirinyuh yang tumbuh di Kawasan Aceh Besar mengandung senyawa flavonoid. alkaloid, steroid, terpenoid, saponin dan tanin yang berperan sebagai agen antibakteri. Sejalan hasil penelitian Kurang dkk. (2022) menyatakan bahwa ekstrak daun kirinyuh mengandungan senyawa flavonoid, alkaloid, steroid. terpenoid, saponin dan tanin. Senyawa metabolit sekunder ini memiliki mekanisme unik masing-masing dalam menghambat atau membunuh bakteri, termasuk:

Flavonoid memiliki berbagai mekanisme yang dapat menghambat pertumbuhan bakteri, seperti mengganggu sintesis dinding sel, menghambat sintesis merusak membran sel. membran sitoplasma, menghambat sintesis asam nukleat dan berbagai mekanisme lainnya. Ketika flavonoid menyebabkan sel-sel bakteri saling berikatan, ini mengurangi luas permukaan populasi bakteri. Hal ini mengakibatkan dapat berkurangnya ketersediaan nutrisi bagi bakteri, sehingga bakteri tidak dapat melakukan sintesis DNA, peptidoglikan dan proses lain yang pertumbuhan diperlukan untuk kelangsungan hidup mereka (Darmawati dkk. 2015).

Alkaloid memiliki sifat antibakteri yang mampu menghambat pembentukan sel bakteri lapisan dinding secara pada menyeluruh, yang gilirannya menyebabkan kematian sel dengan mengganggu komponen peptigoglikan dan sel bakteri (Ernawati, 2015).

Cara steroid berfungsi sebagai agen antibakteri melibatkan interaksi tingkat dengan membran lipid dan sensitivitas terhadap komponen steroid. vang akhirnya menyebabkan kebocoran pada liposom bakteri dan menghambat pertumbuhan bakteri (Madduluri dkk., 2013). Steroid dapat berinteraksi dengan membran fosfolipid sel yang bersifat permeabel terhadap senyawa-senyawa lipofilik. Interaksi ini dapat mengakibatkan penurunan integritas membran perubahan morfologi membran sel, yang pada akhirnya menyebabkan sel menjadi rapuh dan mengalami lisis (Sapara, 2016).

Senyawa terpenoid beroperasi sebagai antibakteri dengan meningkatkan fluiditas dan permeabilitas membran plasma bakteri yang mengakibatkan kebocoran bahan intraseluler. Terlebih lagi, terpenoid dapat menembus membran sel, meresap ke dalam sel dan merusak komponen intraseluler yang penting bagi aktivitas bakteri (Kristiani dkk., 2016).

Cara kerja saponin sebagai agen antibakteri adalah melalui gangguan pada tegangan permukaan sel (Karlina dkk., 2013). Saponin mampu berikatan dengan lipopolisakarida di dinding sel bakteri yang mengakibatkan peningkatan permeabilitas dinding sel dan penurunan tegangan permukaannya. Akibatnya, dalam interaksi ini dinding sel dapat mengalami pecah atau lisis, memungkinkan zat antibakteri untuk lebih muda masuk ke dalam sel dan mengganggu metabolisme yang akhirnya mengakibatkan kematian bakteri (Sari dkk., 2015).

Saponin memiliki sifat antibakteri yang mampu menghambat pertumbuhan bakteri dengan merusak dinding sel dan meningkatkan permeabilitas sel bakteri dengan melekat pada membran luar. Dampaknya, saponin bisa memicu lisis dinding sel bakteri melalui peningkatan aktivitas enzim alkalin fosfatase (AKP) yang terjadi secara cepat setelah berinteraksi dengan kultur bakteri (Khan dkk., 2018).

DAFTAR RUJUKAN

Ance, P. E., Wijaya, S., & Setiawan, H. K. (2018). Standarisasi dari Daun Kirinyuh (Chromolaena odorata) dan Simplisia Kering dari Tiga Daerah yang Berbeda. *Journal of Pharmacy Science and Practice*. 5 (2), 79-86

Antika, R. (2019). Uji Aktivitas Antibakteri Ekstrak Buah Pedada (*Sonneratia* caseolaris L.) Terhadap Staphylococcus epidermidis. Skripsi.

Darmawati, A. A. S. K., Bawa, I. G. A. G., & Suirta, I. W. (2015). Isolasi dan Identifikasi Senyawa Golongan Tanin adalah senyawa organik yang memiliki aktivitas dalam menghambat pertumbuhan mikroba dengan merusak dinding sel mikroba. Selain itu, tanin juga mampu mengikat protein adhesion yang berfungsi sebagai reseptor permukaan oleh bakteri. Hal ini mengakibatkan penurunan kemampuan bakteri untuk melekat pada permukaan dan menghambat sintesis yang diperlukan untuk pembentukan dinding sel (Restina dkk., 2016)

KESIMPULAN

Berdasarkan hasil dari penelitian yang telah dilakukan dapat diambil kesimpulan bahwa nilai hambatan pada Konsentrasi Hambat Minimum adalah sebesar 25% dan Konsentrasi Bunuh Minimum pada bakteri *Staphylococcus epidermidis* sebesar 100%.

Flavonoid pada Daun Nangka (*Artocarpus heterophyllus lmk*) dan Aktivitas Antibakteri terhadap Bakteri *Staphylococcus aureus. Jurnal Kimia*, 9(2), 203-210.

Ernawati, S. K. (2015). Kandungan Senyawa Kimia dan Aktivitas Antibakteri Ekstrak Kulit Buah Alpukat (Persea americana. mill) terhadap Bakteri Vibrio alginolitycus). Jurnal Kajian Veteriner, 3(2), 203-211.

- Fadia., Nurlailah., Tini, E. H., & Leka, L. (2020). Efektivitas Ekstrak Etanol daun Kirinyuh (*Choromolaena odorata L*) sebagai Antibakteri Salmonella typhi dan Staphylcoccus aureus. Jurnal Riset Kefarmasian Indonesia, 2(3), 158-168.
- Frastika, D., Ramadhanil, P., & I, N. S. (2017). Uji Efektivitas Ekstrak Daun Kirinyuh (*Chromolaena Odorata (L.*) R. M. King Dan H. Rob) Sebagai Herbisida Alami Terhadap Perkecambahan Biji Kacang Hijau (*Vigna Radiata (L.*)R.Wilczek) Dan Biji Karuilei (*Mimosa Invisa Mart. ex Colla*). *Jurnal Sains dan Teknologi,* 6(3), 225-238.
- Gultom, E. S., Mutiara, S., & Uswatun, H. (2020). Eksplorasi Senyawa Metabolit Sekunder Daun Kirinyuh (*Chromolaena Odorata L*) dengan *GC-MS. Jurnal Biosains*, 6(1), 23-26.
- Handayany, G. N. (2016). Pengaruh Metode Ekstraksi Terhadap Aktivitas Antimikroba Ekstrak Metanol Daun Mimba (*Azadirachta indica juss*). *Jurnal Teknosains*, 10(2), 211-222..
- Hidayatullah, M. E. (2018). Potensi Ekstrak Etanol Tumbuhan Kirinyuh (*Chromolaena odorata*) sebagai Senyawa Anti-Bakteri. *URECOL*, 1-6.
- Juariah, S., & Sari, W. P. (2018).
 Pemanfaatan Limbah Cair Industri
 Tahu sebagai Media Alternatif
 Pertumbuhan Bacillus Sp. Jurnal
 analisis kesehatan dan klinikal sains.
 6(1), 24-29.
- Karlina, C., M, I., & Trimulyono. (2013).
 Aktivitas Antibakteri Ekstrak Herba
 Krokot (Portulaca oleracea L.)
 terhadap Staphylococcus aureus
 dan Escherichia coli. Lentera Bio
 Berkala Ilmiah Biologi, 2 (1), 83-92.
- Khan, M. I., Ahhmed, A., Shin, J. H., Baek, J. S., Kim, M. Y., & Kim, J. D. (2018).

- Green Tea Seed Isolated Saponins
 Exerts Antibacterial Effects Against
 Various Strains of Gram-Positive and
 Gram-Negative Bacteria, A
 Comprehensive Study In Vitro and In
 Vivo. Evidence-Based
 Complementary and Alternative
 Medicine, 1-12.
- Kristiani, E.B., Kasmiyati, S., & Herawati, M.M. (2016). Skrining fitokimia dan aktivitas antibakteri in vitro ekstrak heksana-petroleum eter Artemisia Cina *Berg. Ex Poljakov. Agric.* 27(1), 30-37.
- Kurang, R. Y., & Penlaana, R. (2022). Daya Hambat Ekstrak Metanol dan Etil Asetat Daun Kirinyuh (*Chromolaena Odorata L.*) terhadap Bakteri *Escherichia coli. Jamb.J.Chem*, 4 (2), 22-29.
- Kurang, R. Y., Koly, F. V. L., & Kafolapada, D. I. (2020). Aktivitas Antioksidan Ekstrak Etil Asetat Daun Kelor (Moringa Oleifera L). Journal of Pharmaceutical Care Anwar Medika (J-PhAM), 3 (1), 13-21.
- Madduluri, S, Rao K. B., & Sitaram B. (2013). In vitro evaluation of antibacterial activity of five indigenous plants extract against five bacterial pathogens of human. International Journal of Pharmacy and Pharmaceutical Science, 5(4, 679-84.
- Manguntungi, B., Ali, B. K., Yulianti, A., & Yunianti. (2016). Pengaruh Kombinasi Ekstrak Kirinyuh (*Chromolaena odorata L*) dan Sirih (*Piper betle L*) dalam Pengendalian Penyakit Vibriosis pada Udang. *Jurnal Biota, 1*(3), 138-144.
- Nuraina. (2015). Uji Aktivitas Antimikroba Ekstrak Daun *Garcinia benthami* Pierre dengan Metode Dilusi. *Skripsi.* Jakarta: UIN Syarif Hidayatullah Jakarta.

- Pinta., Widya, A., L, & Paulina, V.Y., Y. (2017).Identifikasi Kandungan Fitokimia Dan Uji Kadar Hambat Minimum Dan Kadar Bunuh Minimum Ekstrak Etanol Daun Pangi (Pangium Edule Reinw. Ex Blume) Teerhadap Pertumbuhan Bakteri Escherichia Coli. Jurnal Ilmiah Farmasi UNSRAT. 6(3): 260-267
- Purnama, R., Melki., Wike, A., EP., & Rozirwan. (2011). Potensi Ekstrak Rumput Laut Halimeda renchii dan Euchema cottonii Sebagai Antibakteri *Vibrio Sp. Maspari Journal.* 2. (1): 82-88.
- Rahayu, R. S. (2017). Aktivitas Ekstrak
 Etanol Daun Kirinyuh
 (*Choromolaena odorata L*) sebagai
 Antibakteri Terhadap *Escherichia*coli, Staphylococcus aureus dan
 Pseodomonas aeruginosa. Skripsi.
 Medan: Universitas Negeri Medan.
- Restiana, E., Khohitma, S., & Fitrianingrum, I. (2016). Uji Aktivitas Antibakteri Ekstrak Etil Asetat Pelepah Pisang Ambon (*Musa paradisiaca Linn*) Terhadap
- acnes dan Staphylococus epidermis. JKK, 4 (4), 21-28.
- Warella, J. C., Widodo, A. D. W., Setiabudi, Lestari, Ρ. (2020).Antimicrobial Potential Activity of Extract Selaginella plana (Desv. EX Poir.) Hieron against the Growth of Staphylococcus aureus **ATCC** 25922 and Methicillin-Resistance Staphylococcus aureus (MRSA). Journal University Air Langga, 245-253.
- Wulaisfan, R., & Hasnawati. (2017). Uji
 Daya Hambat Ekstrak Daun Sukun
 (*Artocarpus altilis*) Terhadap
 Pertumbuhan Bakteri
 Staphylococcus epidermidis. Jurnal
 Warta Farmasi. 6 (2), 90-99.

- Propionibacterium acnes. Jurnal Cerebellum, 2 (2), 422-433.
- Salim, Milana, dkk. (2016). Karakterisasi Simplisia dan Ekstrak Kulit Buah Duku (*Lansium domesticum corr*) dari Provinsi Sumatera Selatan dan Jambi. *Jurnal Kefarmasiaan Indonesia*, 6(2): 117-128.
- Sapara, T. U. (2016). Efektivitas antibakteri ekstrak daun pacar air (*Impatiens balsamina L.*) terhadap pertumbuhan porphyromonas gingivalis. PHARMACON, 5(4).
- Saputera, M. M. A., Marpaung, T. W. A., & Ayuchecaria, N. (2019). Konsentrasi hambat minimum (KHM) kadar ekstrak etanol batang bajakah tampala (*Spatholobus Littoralis Hassk*) terhadap bakteri *Escherichia coli* melalui metode sumuran. *Jurnal Ilmiah Manuntung*, 5(2), 167–173.
- Sari, I. P., Wibowo, M. A., & Arreneuz, S. (2015). Aktivitas Antibakteri Ekstrak Teripang Buto Keling (*Holothuria leucospilota*) dari Pulau Lemukutan Terhadap Bakteri *Propionibacterium*
- Yenti, R., Afrianti, R., & Afriani, L. (2011).
 Formulasi Krim Ekstrak Etanol Daun
 Kirinyuh (Euphatorium Odoratum L)
 Untuk Penyembuhan Luka. *Majalah Kesehatan Pharmamedika, 3*(1),
 227-230.