SIMULASI DINAMIKA MOLEKUL FENOMENA ADSORPSI DI-(2-ETILHEKSIL)FTALAT (DEHP) PADA MINERAL MONTMORILONIT

Authors

  • Reza Roisatul Umma a:1:{s:5:"en_US";s:31:"Bandung Institute of Technology";}
  • Muhammad Ali Zulfikar Institut Teknologi Bandung
  • Mia Ledyastuti Institut Teknologi Bandung

DOI:

https://doi.org/10.22373/amina.v2i3.1424

Keywords:

Adsorpsi, DEHP, Organo-montmorilonit, Simulasi Dinamika Molekul

Abstract

Senyawa di(2-etilheksil) ftalat (DEHP) merupakan salah satu polutan yang ditetapkan oleh European Union (EU) dan World Health Organization (WHO) ke dalam daftar polutan utama dan dianggap paling bermasalah bagi kesehatan manusia yaitu dapat menimbulkan gangguan sistem endokrin, sistem saraf, dan hepatotoksik. DEHP digunakan sebagai plasticizer terutama pada polivinil klorida (PVC) yang hampir 50% mengandung DEHP. Senyawa DEHP tidak terikat secara kovalen dengan produknya sehingga mudah terlepas dari produk dan dapat memasuki lingkungan bebas. Jumlah DEHP di lingkungan bebas perlu dikendalikan dan salah satu metode yang sederhana dan efektif adalah adsorpsi. Pada penelitian ini dilakukan adsorpsi dengan pendekatan molekuler, yaitu simulasi dinamika molekul menggunakan perangkat lunak GROMACS. Penelitian ini bertujuan untuk membandingkan adsorpsi DEHP pada montmorilonit dan montmorilonit termodifikasi BDED atau CTMA yang kemudian disebut sebagai organo-montmorilonit, serta menentukan kondisi optimum sistem adsorpsi DEHP. Berdasarkan hasil simulasi, konsentrasi awal (C0) DEHP 0,044 mol/L menghasilkan adsorpsi maksimum yaitu sebanyak 3 molekul DEHP teradsorpsi (77,5%). Saat C0 DEHP dinaikkan menjadi 0,088 mol/L, tidak ada molekul DEHP yang teradsorpsi pada permukaan MMT. Sementara itu, pada MMT (1 lapis) termodifikasi BDED dengan jumlah molekul BDED 0,24 KTK, persentase adsorpsi mengalami peningkatan menjadi 44%. Hal ini menunjukkan bahwa penambahan surfaktan kationik berhasil meningkatkan persentase adsorpsi DEHP.

References

Aggarwal, V., Chien, Y. Y., & Teppen, B. J. (2007). Molecular simulations to estimate thermodynamics for adsorption of polar organic solutes to montmorillonite. European Journal of Soil Science, 58(4), 945–957. https://doi.org/10.1111/j.1365-2389.2007.00939.x

Bellou, S., & Aggelis, G. (2013). Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology, 1–12. https://doi.org/10.1016/j.jbiotec.2013.01.010

Chen, C. Y., Wu, P. S., & Chung, Y. C. (2009). Coupled biological and photo-Fenton pretreatment system for the removal of di-(2-ethylhexyl) phthalate (DEHP) from water. Bioresource Technology, 100(19), 4531–4534. https://doi.org/10.1016/j.biortech.2009.04.020

Cheon, Y.-P. (2020). Di-(2-ethylhexyl) Phthalate (DEHP) and Uterine Histological Characteristics. Development & Reproduction, 24(1), 1–17. https://doi.org/10.12717/dr.2020.24.1.1

Dobrzyńska, M. M. (2016). Phthalates - widespread occurrence and the effect on male gametes. Part 1. General characteristics, sources and human exposure. Roczniki Państwowego Zakładu Higieny, 67(2), 97–103.

Hammad Khan, M., & Jung, J. Y. (2008). Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere, 72(4), 690–696. https://doi.org/10.1016/j.chemosphere.2008.02.037

Orr, A. A., He, S., Wang, M., Goodall, A., Hearon, S. E., Phillips, T. D., & Tamamis, P. (2020). Insights into the interactions of bisphenol and phthalate compounds with unamended and carnitine-amended montmorillonite clays. Computers and Chemical Engineering, 143. https://doi.org/10.1016/j.compchemeng.2020.107063

Qureshi, U. A., Gubbuk, I. H., Ersoz, M., Solangi, A. R., Taqvi, S. I. H., & Memon, S. Q. (2016). Preparation of polyaniline montmorillonite clay composites for the removal of diethyl hexyl phthalate from aqueous solutions. Separation Science and Technology (Philadelphia), 51(2), 214–228. https://doi.org/10.1080/01496395.2015.1088029

Rowdhwal, S. S. S., & Chen, J. (2018). Toxic Effects of Di-2-ethylhexyl Phthalate: An Overview. BioMed Research International, 2018(Figure 1). https://doi.org/10.1155/2018/1750368

Sung, H. H., Kao, W. Y., & Su, Y. J. (2003). Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. Aquatic Toxicology, 64(1), 25–37. https://doi.org/10.1016/S0166-445X(03)00011-0

Underwood, T., Erastova, V., & Greenwell, H. C. (2016). Wetting Effects and Molecular Adsorption at Hydrated Kaolinite Clay Mineral Surfaces. Journal of Physical Chemistry C, 120(21), 11433–11449. https://doi.org/10.1021/acs.jpcc.6b00187

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291

Wei, X., Shi, Y., Fei, Y., Chen, J., Lv, B., Chen, Y., … Zhu, L. (2016). Removal of trace phthalate esters from water by thin-film composite nanofiltration hollow fiber membranes. Chemical Engineering Journal, 292, 382–388. https://doi.org/10.1016/j.cej.2016.02.037

Wester, R.C., Melendres, J., Sedik, L., Maibach, H., Riviere, J. E. (1998). Percutaneous absorption of salicylic acid, theophylline, 2, 4-dimethylamine, diethyl hexyl phthalic acid, and q-aminobenzoic acid in the isolated perfused porcine skin flap compared to man in vivo. Toxicology and Applied Pharmacology.

Willemsen, J. A. R., Myneni, S. C. B., & Bourg, I. C. (2019). Molecular Dynamics Simulations of the Adsorption of Phthalate Esters on Smectite Clay Surfaces. Journal of Physical Chemistry C, 123(22), 13624–13636. https://doi.org/10.1021/acs.jpcc.9b01864

Zhu, R., Chen, W., Shapley, T. V., Molinari, M., Ge, F., & Parker, S. C. (2011). Sorptive characteristics of organomontmorillonite toward organic compounds: A combined LFERs and molecular dynamics simulation study. Environmental Science and Technology, 45(15), 6504–6510. https://doi.org/10.1021/es200211r

Downloads

Published

2022-02-23